
1

Esther Pacitti

SOPHIA ANTIPOLIS - MÉDITERRANÉE

Collaborators: R. Akbarinia, M.El-Dick, B. Kemme, F. Draidi

2

Context & objective
  Online communities

  Users have common interests and are willing to share data
  Dynamic and large scale (web scale) collaboration of

members

  P2P as light-weight alternative to centralized servers
  We mainly focus in the distributed architecture approaches

File Sharing
Collab. editing
P2P CDN
Social networks
Recommendation,
etc.

Social network topology
C
O
N
T
E
X
T
S

2

3

Outline

  P2P systems
  P2P Content Distribution Network (CDN)
  P2P Recommendation
  P2P collaborative editing using DHT’s
  Conclusion and Perspectives

4

P2P systems
  Each peer can have the same functionality
  Decentralized control, large scale
  Main overlays:

  non- structured
  Structured
  Gossip based

private sharable

P2P software private sharable

P2P software

private sharable

P2P software

3

5

Structured overlay:
Distributed Hash Table (DHT)

  Implements a hash table indexing functionality over P2P
  Each peer n has an identifier p (hash(IP))
  Each peer identified by n is responsable for a range of keys
  Each peer is placed in the ring in ascending order
  Notion of sucsessors and predecessors using a finger table of m entries.
  Each entry points to specific peer q

6

Structured overlay:
Distributed Hash Table (DHT)

  Deterministic: maps a given key onto p, called responsible of key,
and looks up p efficiently using finger tables

  key = hash (filename)
  Lookup(key) -> p
  put(key, value): stores a pair (key, value) at the peer
 that is responsible for key
  get(key): retrieves the value associated with key
  Complexity (O(log(n))
  Scalability, efficient data location
  No freedom for data placement
  Examples: Can, Chord, Pastry, etc

4

7

Structured overlay:
Distributed Hash Table (DHT)

8

Structured overlay:
Distributed Hash Table (DHT)
  Churn Behavior
  Arrivals

  New peer gets the responsabilities of some of its sucessor keys
  The DHT stabilization layer updates the involved finger tables

  Departs
  The departing peer transfers the responsabilities of his keys to sucessor
  The DHT stabilization layer updates the involved finger tables

  Failures
  Peers detects the neighbors failures and triggers the DHT stabilization

layer to update the involved peers
  Not well suited for high degree of churns

  Stabilization layer does not provide guarantess

5

9

Unstructured Overlays

10

Unstructured Overlays

Each peer has a established link with some neighbors

6

11

Decentralized Unstructured Overlays

Query: “xyz”

xyz
xyz

Peer 2

Peer 1

1 hop

Gnutella: flooding approach

12

Unstructured Overlays
  Only neighbors id’s are needed for query routing: non-deterministic
  Query routing (flooding)

  blindness and redundancy
  In average any two peers are less than 7 hops away
  Natural replication => fault tolerance, robustness
  Data is stored locally
  Well suited for churn

  No stabilization layer
  Generates heavy network traffic
  A query necessitates O(n) hops to find a object
  Other protocols related protocols:

  breadth-first-search, iterative deepening, random walk

7

13

Gossip based overlays (Dynamic Overlays)

  Background data dissemination protocols continuously gossip about
information associated with the participating nodes

Reza

Anna

Esther Bettina

Manal

1) Reza tells Esther: I have tickets to the show

2) Even though Bettina does not learn
from Manal, she will probably learn
from Anna, and ask Reza for a ticket

Neighbors links changes
 Dynamically

14

Gossip-based Overlays
  Widely used in P2P systems

  Overlay construction, information dissemination, data replication, etc

  Main approach: each peer periodically exchanges its
information with another randomly-selected peer

  Each peer keeps locally a view of
  its dynamic acquaintances (or view entries)

  At each peer the behavior of gossip protocols is modelled:
  Active behavior: how to initiate to initiate a gossip exchange
  Passive behavior: how to react to a gossip exchange

  Gossip protocols consist of three modules:
  SelectContact
  ExchangesInfo
  UpdateInfo

8

15

Gossip: example

16

Context: Content Distribution Networks

  A typical commercial CDN (e.g. Akamai)
  Sits between content providers and content consumers
  Has hundreds of servers throughout Internet
  Replicates its customers’ content in CDN servers
  Updates servers when provider updates content

Expensive deployment

9

17

Flower-CDN*

  Replace n edge servers by m volunteers peers (m >> n) that are willing to
collaborate in a same interest (website)

  Locality aware P2P CDN
  Search for a content as close as possible

  Key idea: clients keep their requested content to serve it for others
  Approach: combine DHT efficiency and gossip robustness

  Hybrid P2P overlay

*M. El Dick, E. Pacitti, B. Kemme. Flower-CDN: a Hybrid P2P Overlay for Efficient Query
Processing in CDN. Int. Conf. on Extending Database Technology (EDBT), 2009.

To enable websites of non-profit organizations, to efficiently distribute its
content with help of the community interested in its content

18

Flower-CDN architecture
  Hybrid and locality-aware

  DHT-based overlay (D-ring) that serves as a P2P directory service
  Gossip-based overlay (Petals)

  Clusters clients that share interest in a website ws wrt a locality loc.

dα,1
dα,0

D-ring dα,2

dα,3 dβ,0

dβ,2

dβ,3

dβ,1

Petal Clientsα,2

Websites={α, β}
4 localities (0...3)

dα,2 = directory
peer for α in
locality 2

10

19

Flower-CDN
  Each D-ring peer

  P2P Directory service based on DHT lookup service
  Provides efficient access to a petal for new clients
  Provides directory information wrt to its neighbors in the ring to help

query handling if necessary
  Directory peers of a website are neighbors in D-ring

  Within a petal
  Dynamic overlay for content search
  Serves queries on behalf of a website wrt a locality
  Clients share contents (popular transfered pages)
  Query search is done by gossiping

  Storage and exchange of popular content of ws

20

D-ring: P2P directory

Structured overlay with novel DHT mechanism
Construction based on peers’ interests and localities

Peer Id is split into 2 segments: hash(website ID) + locality ID

Each directory peer is reponsible for 1 key

Each website ws is covered by k directory peers wrt to localities
(landmark-based techniques [Ratnasamy 02])

website ID locality ID

hash (urlws)
[0 .. k-1]

11

21

D-ring lookup service

  Case of a query request for a content wrt to website from a client
at locality loc
  key = hash(website-id) + loc
  Lookup(key) -> directory peer wrt to the website and locality

  Search for content in the corresponding petal
  If the directory peer for that locality does not exist, then

client becomes a new directory peer

Using standard DHT lookup service

22

22

D-ring query processing

dβ,1

Directory-index (β,1)
address object list
 A x, y
 B x, z
 C z

A B

C

dβ,2

D-ring = 1st access to
content overlays

F F

 z

Petal(β,1)

Directory-summary (β,2)

Peer-F(β,1):query for z

D-ring

<hash(β),1>

1) Directory peer redirects the
query to the peer that might hold z
2) If z is not found, the query is re-
directed to a neighbor directory

12

23

23

Clustering peers according to their interest and their locality
 Petal(ws,loc) = dws,loc +{clientws,loc}

1.  After being served, client becomes clientws,loc
2.  Each client holds a view of its petal:

•  group of contacts known by the client (includes content
summary info)

3.  Periodically, each client selects a contact from its view to
gossip (Cyclon: [Voulgaris et. al 05]) and update its view

Clients in a petal gossip to spread information about the
content they have

Petals

24

24

dα,0

dα,3

dβ,2

dβ,1 D-ring

1) Join via D-ring
2) Get subset of contacts
from someone in Petal(β,1)

Clients of β in locality 1

3) Periodic gossip
exchanges summary info in
Petal (β,1) to update client
view
4) By checking its local
summary info, a client may
see where a copy of the
requested object might be
stored

Petal(β,1)

Petals

13

25

Performance Results

  Evaluation compared with an important P2P-CDN solution (Squirrel:
[Sitaram et. Al. 02], based on pure DHT) :
  Flower-CDN reduces lookup latency by a factor of 9 with slight decrease

on hit ratio
  Flower-CDN reduces transfer distance by a factor of 2

26

Related Approaches
  Unstructured Approach
  Poofs: Peers keep requested objects and can then provide them to other

participants. To locate one of the object replicas, a query is flooded to a
random subset, of neighbors with a fixed time-to-live (TTL) i.e., the max
number of hops

  Structured Approach: Squirrel
  Home-based: It places objects at peers with ID numerically closest to the

hash of the URL of the object without any locality or interest
considerations (see Figure1.19a). Queries find the peer that has the object
by navigating through the DHT.

  Directory-based: stores at the peer identified by the hash of the object’s
URL a small directory of pointers to recent downloaders of the object

14

27

Structured Approach: Squirrel

28

Perspactives
  Introduce some personalization on content sharing

  Similar users issue similar queries -> store similar contents
  Exploit similar users contents
  Become friend with similar users - > Social Networks
  Provide Recommendation

15

29

Motivation for P2P Recommendation
Chemistry, Materials Science and
Physics

Bioinformatics

Computer Science

30

Recommendation in the Web
  Helps to choose among a large range of alternatives

by exploiting historical patterns.

16

31

Collaborative Filtering

  Recommends to u items (photos, links, etc) that have been rated
by users who share similar interests based on
  tagging or rating behavior

  Main steps:
  Mesure the similarity between a user u asking for

recommendation and all users in the system
  Select those users who are most similar to u that become

neighbors of u
  Predict missing rates
  Provide recommendation based on u neighbors based on a

Top-k approach

32

Collaborative Filtering
  Measures the similarity between u and all users in the system

  recommendation is done using a matrix model: space consuming

17

33

Content based Recommendation

  Recommend to a user u items that are similar to u’s previously rated
items or similar to the user profile

  Contents are indexed, for instance, by key words (e.g. TF-IDF metric)
  User profile (topics of intrest) are derived based on his content
  Main Steps

  Compute user u topics of intrest (vector of keywords)
  Measure the similarity bewteen u and and each content that u did not

see or rate yet (based on vector-space methods: cosine similarity)
  Select the most similar contents

  User is limited to receive products that are only similar to those it has
rated

34

Content based Recommendation

18

35

Recommendation based of friendship
  Improves the quality of recommendation

  Similar trusful friends are good recommendors
  Modeled as a graph
  Avoids the Cold Start Problem
  Exploits trust networks
  User tags are used to measure users similarities and similarity

bewtween items
  Small-world phenomena

  A user can contact any other user in few hops
  Enables efficiency

36

P2P Recommendation: Content Management Systems

  Used to build distributed information retrieval systems (e.g.key-
word queries in Google)

  Clustering overlay:
  Cluster similar peers based on the contents they store, or
  Stores similar contents in a same peer
  Examples: [Hai,WWW06] [SETS: Bawa,SIGIR’03], [Garcia-Molina 03]

  Shortcut links: peers establishes direct links with other peers who
are similar wrt to intrest or social behavior.
  Examples: [SPOUT ‘04], [P4Q’10], [TRIBLE ‘08]

19

37

P2P Recommendation: Prediction Systems
  Basic prediction: based only in users rates

  Examples: [Tveit’01], [PocketLens’04], [Kermerrec,
OPODIS, 10]

  Social P2P prediction: laverages users preferences (rating) with
users social data (friends, trust, etc)
  Examples: [Kim’03], [Goldneck’06], [Kruk’06]

38

Recommendation Systems Approaches

20

39

P2P Recommendation

40

P2Prec: recommendation for on-line
communities*

  Social Prediction approach that exploits shortcut links
  We exploit the fact that people tend to store content related

to their topics of interests

  Users’ topics of interest can be automatically derived from
the contents or documents they store and the ratings they
give, without requiring tagging

Draidi, F., Pacitti, E., Kemme, B., P2Prec: a P2P Recommendation System for Large-
scale Data Sharing. Tran. on Large-Scale Data- and Knowledge- Centered Systems,
LNCS, 6790(3):87-116, 2011

21

41

Recommendation Model
  D is the set of shared rated documents doci…docn

  U is the set of users in the system, corresponding to autonomous peers
  Topic management*

  T is the set of global topics
  Tu ⊂ T, is the set of users’ topics of interest (based on rating and

relative no of documents)
  Tu

r⊂ Tu is the set of users’ relevant topics (based on rating and the
absolute no of documents on the topic)

  Q: key-word queries that are mapped to topics Tq ⊂ T
 To anwser a query we rely on relevant users wrt to Tq

*Automatically extracted using LDA (used in IR)

42

Recommendation Model
  Recommendation is based on rates and popularity
  Query answer to q

  recommendationq = rank(recq1(doci),… recqn(docj))
Where

 rank(recqi(doc)) = a*similarity(doc,q) + b*pop(doc)

Problems:
 How to find relevant users wrt to a query ?
 How to trust the recommendation ?

22

43

Finding Relevant Users: Gossip Approach

-Disseminate relevant users information by gossiping
-Gossip view is dynamically updated
-In the event of a query at u

 -u searches for similar relevant users v∈u’s local-view
 so that v can give recommendation for q.
 -at each selected v, the gossip view is recursively

 exploited to serve the query, until TTL.
-u receives recommendations and ranks them

44

Relevant Users Dissemination with Random Gossip

u v3

v1

v4

v2

gossip

t1,t2

t1

t1

t3

User Gossip information

v1 t1, t2
v4 t2,t3

User Gossip information

v2 t1

v1’s local-view before gossip

User Gossip information

v1 t1, t2
v4 t2,t3
v2 t1

v1’s local-view after gossip

1) Each user u maintains a
local-view

2) Each user u periodically
selects
–  a random contact v to

gossip with
–  a gossip message and

send it to v

3) Each user u recieves a
gossip message
–  Updates its local-view

u’s local-view before gossip u’s local-view after gossip

23

45

Query Processing

u1 u2

u3

u5
u6

u4

query q requester
q.t = t1, q.TTL=2

q.TTL=1 q.TTL=1 q.TTL=0

Similarity and rates info

query

Rec. docs

u7

t1,t2

t1

t1

t3

t2

Compute sim(doc,q) Compute sim(doc,q)

Compute sim(doc,q)

Random gossip may generate uninteresting view states
limiting useful recommendations

1) Query q is mapped to topics Tq
2) Select Top-k contacts in the gossip view wrt to the query topics
 (cosine similarity)
3) Redirect Query
4) Do 2) and 3) Recursively until TTL

46

Semantic Gossiping
  Idea: user u maintains a local-view of relevant similar users with high hit-ratio
  Hit-ratio is defined as the percentage of the number of queries that have been

answered sucessfully
  When u initiates a query q , it searches for relevant users v∈u’s local-view

so that v can give recommendation for q. If u finds such relevant users,
then u’s hit-ratio is increased

  If a user u has high hit ratio it means that he has similar revelant users in his
gossip view

  u hit-ratio can be easily added as an attribute of a local-view entry, and
becomes part of the gossip message

  Gossip is done with one of the most similar relevant user that is similar to u,
with high hit-ratio, not chosen recently to learn about new similar contacts

  Query processing is the same as before

However, Semantic Gossip may reduce the user’s
ability to discover new relevant users

24

47

Semantic Two-layered Gossip
  What about combining Random and Semantic Gossip ?
  Inspired on [Voulgaris10]
  In our approach the two views are managed asynchronously
  Random View: to find new useful contacts
  Semantic View: works as before
  Random view is also taken into account to update the

semantic view

48

Semantic Two-layered Gossip

25

49

Open Issues: Trusted Recommendation
  Exchange high recall by trusted recommendation
  Exploit Friend to Friend recommendation instead of anonymous

recommendation
  Define a trust model based on friendship and social structures
  Idea: keep all found relevant users found during random gossiping that are

declared friends in a local file (FOAF file)
  FOAF provides an open, detailed description of profiles of users and the

relationships between them using a machine-readable syntax
  Use the FOAF file to serve queries instead of the gossip views
  New social metrics:

  Similarity and trust among friends networks
  Diversity (not only similar documents, or friends)
  Exploit the popularity of a document as the number of replicas in P2Prec

  Define a metric to express user satisfaction

50

Trends
  Existing social model are not enough
  Define a Social Model suited for specific communities (e.g.

scientific researchers) based on communities hierarchies,
reputation, etc.

  Case study: Collaboration among differents research
communities around the world that are willing to share
phenotypage data to study plant behavior in different conditions
(temperature, season, etc).

  Exploit Cloud facilities and several Cloud instances
  Each peer stores his data in the cloud in a controled way

26

51

P2P collaborative editing using DHT’s

Enterprise Wiki system
in OSS from Xpertnet,
Paris
•  Collaborative text editing

among multiple users
•  Wiki-page updating (last

save wins)
•  Client-server architecture

XWIKI XWIKI

Hibernate

DB

Client

Server *ANR Xwiki Concerto Project

52

Xwiki Context

How to ensure eventual consistency ?

P2P Network

XWiki

XWiki

XWiki

XWiki

replica 1

replica 2 replica 4

replica 3

27

53

Approach

  Multi-master replication using Operational Transforms (OT)
(Ferrié et al. [04 ,07], Molli et al. [07,08], etc)
  Replicates a document in all sites and allows edition

operation
  Operations: insertion, delete, update

  Remote operations are transformed before execution to
repair inconsistencies, wrt to a specific order

  The challenge is to provide
  Eventual consistency and scalability

54

efect

effect

effecst

efects

effects

Site 1: User 1 Site 2: user 2

efect

Ins(2,f)

Ins(5,s)

Op1 Op2

Ins(5,s)

Ins(2,f)

Example of inconsistency

28

55

efect

effect

effects

efects

effects

Site 1: User 1 Site 2: user 2

efect

Ins(2,f)

Ins(6,s)

Op1

Op’2

Op2

Ins(5,s)

Ins(2,f)

Reconciliation with SO6 [Molli et. al. 03]

T(Ins(5,s),Ins(2,f)) =
 Ins(6,s)

operations are in continuous
timestamp order to establish total
order (eventual consistency)

56

OT with SO6*
  Each operation is broadcast to all users.
  All operations need be timestamped in continuous order (1,2,3…)

  Enables concurrent users to be aware of how many remote operations they
miss before applying the transformation

  Centralized timestamper
  Limited scalability
  Bottleneck
  Single point of failure
  Limited Log

* P. Molli, G. Oster, H. Skaf-Molli, A. Imine. Using the transformational approach to build a
safe and Generic data synchronizer. ACM SIGGROUP Conf., 2003.

Synchronizer

29

57

P2P Logging and Timestaming for
Reconciliation (P2P-LTR)

  Replaces the centralized synchronizer by P2P synchronizer
  Replaces the centralized log by P2P log
  Major functions

  Logging of user operations (patchs) in a DHT
  P2P continuous timestamping of these operations

  Continuous timestamp order: ts2 = ts1 + 1

*M. Tlili, W. K. Dedzoe, E. Pacitti, et al. P2P Logging and
Timestampg for Reconciliation, VLDB Conf. 2008.

t1 op1 t2 op2 t3 op3

DHT

t1 op1

t2 op2

t3 op3

58

P2P-LTR model

DHT

Each XWiki document is identified by a key

Xwiki peer: application

Master-key:
 1) generates timestamps for a given
document (provides last-ts)
 2) publishes consistently patches in log
peers
Master-key succ: replaces Master-key
after crash

Log peer: stores timestamped patches
for a key

In the Internet or in a a Cloud

30

59

 P2P-LTR reconciliation

Log

Reconc. Engine

Xwiki-Client: Post (key, patch, ts)

(1): publish(patch,ts)

n Log-Peers and its successors

(5): Log Patch

Master of Key

Master-Succ
(5): Replicate Last-ts

(6)ack

(3): get missing patches
 and transform locally

(2): ack / Last-ts

(4): publish (patch,ts)

(5): Log Patch

(5): Log Patch

60

Results and Perspectives
  Performance

  Response times are significantly improved (up to a factor of 3) regardless
of the number of documents

  Low impact of failures, on response time:
  E.g. by increasing the failure rate by 5, the response time increases by about 11%

  Wide applicability
  Data storage in the Cloud

31

61

Conclusion: P2P-> Cloud2Cloud (C2C)
  P2P are good for privacy reasons

  Avoids storing data in remote untrusted infratrusuctures that
may not scale well

  However P2P are vunerable to attacks
  Clouds may offer more gurantees and storage facilities (NoSql,

elasticity, etc)
  What about exploiting private C2C architectures for

decentralization ?

62

Thanks !

Questions ?

