

Structured overlay: Distributed Hash Table (DHT)

□ Implements a hash table indexing functionality over P2P

- Each peer *n* has an identifier *p* (hash(IP))
- Each peer identified by *n* is responsable for a range of keys
- Each peer is placed in the ring in ascending order
- Notion of successors and predecessors using a *finger table of m entries*.
- Each entry points to specific peer q

Flower-CDN

□ Each D-ring peer

- P2P Directory service based on DHT lookup service
- Provides efficient access to a petal for new clients
- Provides directory information wrt to its neighbors in the ring to help query handling if necessary

19

Directory peers of *a website* are neighbors in D-ring

□ Within a petal

- Dynamic overlay for content search
- Serves queries on behalf of a *website* wrt a *locality*
- Clients share contents (popular transfered pages)
- Query search is done by gossiping
 - □ Storage and exchange of popular content of *ws*

D-ring: P2P directory Structured overlay with novel DHT mechanism Construction based on peers' interests and localities Peer Id is split into 2 segments: hash(website ID) + locality ID website ID locality ID hash (url_{ws}) Each directory peer is reponsible for 1 key Each website *ws* is covered by *k* directory peers wrt to localities (landmark-based techniques [Ratnasamy 02])

□ Recommends to *u* items (photos, links, etc) that have been rated by users who share similar interests based on

- tagging or rating behavior
- □ Main steps:
 - Mesure the similarity between a user *u* asking for recommendation and all users in the system
 - Select those users who are most similar to *u* that become neighbors of *u*
 - Predict missing rates
 - Provide recommendation based on *u* neighbors based on a Top-k approach

- □ Improves the quality of recommendation
 - Similar trusful friends are good recommendors
- □ Modeled as a graph
- □ Avoids the Cold Start Problem
- □ Exploits trust networks
- □ User tags are used to measure users similarities and similarity bewtween items

35

- □ Small-world phenomena
 - A user can contact any other user in few hops
 - Enables efficiency

Recommendation Model

- \square D is the set of shared rated documents $doc_i...doc_n$
- \Box U is the set of users in the system, corresponding to autonomous peers
- □ Topic management*
 - T is the set of global topics
 - $T_u \subset T$, is the set of users' topics of interest (based on rating and relative n^o of documents)
 - $T_u^r \subset T_u$ is the set of users' relevant topics (based on rating and the absolute n^o of documents on the topic)

41

- \square Q: key-word queries that are mapped to topics $T_a \subset T$
 - To anwser a query we rely on relevant users wrt to T_q

*Automatically extracted using LDA (used in IR)

Finding Relevant Users: Gossip Approach

Disseminate relevant users information by gossiping
Gossip view is dynamically updated
In the event of a query at *u*-u searches for similar relevant users v∈u's local-view so that v can give recommendation for q.

-at each selected v, the gossip view is recursively

exploited to serve the query, until TTL.

-u receives recommendations and ranks them

- □ Exchange high recall by trusted recommendation
- □ Exploit Friend to Friend recommendation instead of *anonymous* recommendation
- Define a trust model based on friendship and social structures
- □ Idea: keep all found relevant users found during random gossiping that are declared friends in a local file (FOAF file)
 - FOAF provides an open, detailed description of profiles of users and the relationships between them using a machine-readable syntax
- □ Use the FOAF file to serve queries instead of the gossip views
- New social metrics:
 - Similarity and trust among friends networks
 - Diversity (not only similar documents, or friends)
 - Exploit the popularity of a document as the number of replicas in P2Prec

49

Define a metric to express user satisfaction

