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Pattern Mining Problems
A main theme in data mining

I Basket data analysis, seminal paper of Apriori [AS94]
I Plenty of such problems
I Even more applications and
I an overflow of research papers since 1994 !

Examples

I frequent itemsets (and variants), sequences, trees, graphs
I functional, inclusion, multivalued dependencies
I learning monotone function
I minimal transversals of hypergraph

ë A wide class of problems, some being studied for years in
combinatorics, artificial intelligence and databases
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Practical Applications

Pattern mining problems ë hidden behind practical applications

For instance:
1. Basket data analysis (Agrawal et al, VLDB’93) [AS94]
2. Query rewriting in data integration (H. Jaudoin et al, DL’05)

[JFPT09]
3. Discovering complex matchings across web query

interfaces: a correlation mining approach (B. He et al,
KDD’04) [HCH04]

4. and much more ...

⇒ data-centric steps of many practical applications
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Main constat

Data mining research in this (sub-)area ?
ë most of the time, ad-hoc solutions (with customized data
structures)

I Can be seen as a competition to devise (low-level) code (to
beat previous implementations)

I I/O routines sometimes as important as algorithmic
strategies !

For one problem common to many applications, one solution
per application !

I efficient low level code very difficult to reuse
I a slight change in the problem statement (data, pattern or

predicate) often means to re-start development from
scratch
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Our Motivations

Elegant and concise solution should exist !

ë Rapid prototyping of new problems should be easy
ë Low-level details should be hidden to developers
ë Efficient and scalable implementations

Long-term objective

ë Pushing forward declarative approaches (SAT/CP,
Databases) for pattern mining problems

ë Towards a wider dissemination of data mining techniques

5/71



Related works

Main trends for declarative approaches in data mining

I C++ library (DMTL [CHSZ08], iZi [FDP09]) – remains
programmer-dependent, lack of declarative languages +
optimization

I Inductive logic programming (e.g. [Wro00, NR06]) – highly
expressive, not efficient enough

I Inductive Databases (e.g. [IM96, LGZ10, RT11])
I Constraint programming (De Raedt group [RGN08], Caen,

Lens, Lyon) – new trends of research, relatively active
I Databases and Data Mining (e.g. [HFW+96, Cha98,

STA98, IV99, CW01, BCC05, FL10, BCF+11, OP11]) –
Many attempts, driven by the "elephants"

I Theoretical frameworks for pattern mining (e.g.
[MT97, GKM+03, AU09, GMS11])
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Requirements on Inductive Databases

Three dimensions [RT11]:
I The KDD as a process: closure principle2, completeness,

reusability
I The data source to explore and the patterns to discover:

Expressiveness, meta-schema definition, extensibility
I The system architecture that supports the query language:

support for efficient algorithm programming, flexibility,
standardization (e.g. PMML)

2The closure principle is sometimes not required [TVS+07].
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Related works
Many attempts, not very successful yet
Compromise to be found between many opposite goals:
genericity, efficiency, easy of use, seamless integration with
SQL . . .
The elephants (Oracle, DB2, SQLServer) have their own data
mining solutions

I built on top of existing DBMS, not fully integrated with SQL
I can be seen as syntactic sugar

Our feeling

I The scope of IDB should be narrowed, even for pattern
mining problems themselves (without classifications,
clustering ...)

I Lack of theoretical background for pattern mining
⇒ Need to specify classes of problems on which
declarative techniques may apply.

I No hope in the large !
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Notations
Mainly from (Mannila and Toivonen, DMKD, 1997) [MT97]

Consider the following framework:
1. Let D be a database
2. Let L be a set of patterns (or a finite language)
3. Let P be a predicate to qualify interesting patterns X in D,

noted P(X ,D)

Definition (Problem statement P)

Given D, L and P, enumerate all interesting patterns of L in D

In other words, enumerate the set
Th(D,LP) = {X ∈ L | P(X ,D)true}

Sometimes, D is made up of patterns of L
Without any other knowledge, how to solve P?
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Structuring the search space (1/2)

Specialization/generalization relation may exist among patterns

4 Let � be a partial order on L

X � Y : X generalizes Y and Y specializes X

Many possible partial orders specific to patterns, e.g. sets,
sequences, trees, inclusion dependencies
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Structuring the search space (2/2)

Influence of the partial order on the predicate ?

The most studied property in data mining: monotonic property

Definition
P is said to be monotone with respect to � if for all X ,Y ∈ L
such that X � Y ,P(Y ,D)⇒ P(X ,D)
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Equivalent problem statements

Two (complementary) notions emerges: the positive and
negative borders, i.e. the most specialized interesting patterns
and the most generalized non interesting patterns

Definition (New problem statement P’)

Given D, L and P, enumerate positive (or negative) border of
interesting patterns of L in D

In other words, enumerate the sets:
bd+(D,L,P,�) = {X ∈ Th | 6 ∃Y ∈ L (X � Y ⇒ Y ∈ Th)}
bd−(D,L,P,�) = {X ∈ L|X 6∈ Th, ∀Y ∈ L(Y � X ⇒ Y ∈ Th)}

⇒ Characterize DAG problems
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Example of frequent itemset mining (FIM)

Let A be a set of items, ε a user-defined threshold, D a
transactional database, L = 2A and P(X ,D) defined as:
P(X ,D) true wrt ε iff card({t ∈ D|X ⊆ t}) ≥ ε
P(X ,D) monotone wrt ⊆

I ’Apriori’ levelwise search with clever candidate
generation

I Depth-first search
I Relationship between borders
I Specialized data structures to optimize the counting

operation, to compress the database ...

Many contributions with international competitions: FIMI 2003,
FIMI 2004, OSDM 2005 workshops
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Example (end)

Levelwise search

Bd+

Pruning strategy: based on the monotonicity property

A B C D E F G

Ø

AB  AC  AD  AE  AF  AG  BC  BD  BE  BF  BG  CD  CE  CF  CG  DE  DF  DG  EF  EG  FG

ABC ABD ABE ABF ABG ACD ACE ACF ACG ADE ADF ADG AEG BCD BCE BCF BCG BDE BDF BDG BEG CDE CDF CDG CEG DEG EFG

ABCD ABCE  ABCF ABCG ABDE ABDF ABDG ABEG ACDE ACDF ACDG ADEG BCDE BCDF BCDG BCEG BDEG CDEG

ABCDE ABCDG ABCEG ABDEG ACDEG BCDEG ABCDF

ABCDEG

Bd-

Bd+

17/71



Outline

Background
Notations
Isomorphism with a boolean lattice
Complexity

CP/SAT and Pattern Mining
Constraint Programming (CP) and Satisfiability (SAT): a
brief overview
CP for Frequent Itemset Mining
CP/SAT for Sequence Mining

Concluding remarks

18/71



Isomorphism with a boolean lattice

Basic idea
Patterns encoded in the powerset of some set and inversely

I For some finite set E , a function f from L to 2E has to exist
such that:

I f−1 is computable
I f bijective
I f preserves the partial order, i.e. X � Y ⇔ f (X ) ⊆ f (Y )

ë Quite severe assumption

ë Define the so-called representable as set pattern mining
problems
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Main interests of "representable as sets" problems
For any representable as set problem:

1. Clear separation between DB accesses for predicate
evaluation and candidate enumerations on patterns

2. Set oriented algorithms can be used everywhere
2.1 candidate generation in levelwise algorithms
2.2 relationship between borders: notion of dualization (minimal

transversal enumeration in an hypergraph)

3. Same algorithm principles can be applied to every problem

Main known class of pattern mining problems

I Formally defined, good candidate to apply declarative
approaches

I Quite restrictive due to the surjectivity constraint
ë The set of patterns has to have 2n patterns
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Complexity of enumeration algorithms

Main points to be studied:

1. Dualization problem (the heart of the many pattern mining
problems)

2. Encoding/decoding of pattern mining problems (new
classes of problems)

3. Relaxation of enumeration problems vs extended
enumeration (new idea)
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Enumeration problems

Definition (Enumeration Problem)

Input: A finite discrete structure S and a predicate P over S.
Output: The set P(S) of elements of S which satisfy P.

Definition (Decision problem)

Input: A finite discrete structure S, a predicate P over S and a
set X ⊆ P(S).
Question: Does X = P(S) holds?

Definition (Decision problem with counterexample)

Input: A finite discrete structure S, a predicate P over S and a
set X ⊆ P(S).
Question: Does X = P(S) holds? Otherwise find x ∈ P(S) \X .
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Enumeration problems

Definition (Enumeration Problem)

Input: A finite discrete structure S and a predicate P over S.
Output: The set P(S) of elements of S which satisfy P.

I |P(S)| can be exponential in |S|.
I Polynomial complexity : O((|S|+ |P(S)|)k ).
I Quasi-Polynomial complexity : nO(log(n)), where

n = |S|+ |P(S)|.
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Dualization problem
Let V be a finite set of patterns, C ⊆ 2V and A ⊆ C.
We note: A+ = {x ∈ C | ∃a ∈ A, a ⊆ x , }
A− = {x ∈ C | ∃a ∈ A, x ⊆ a, }
The negative border of A can be written as:
bd−(A) := max⊆{x | x ∈ C\A+}

Dualisation (Enumeration)

Input: C ⊆ 2V et A ⊆ C
Question: Enumerate bd−(A).

Dualization (Decision)

Input: C ⊆ 2V , A ⊆ C et X ⊆ bd−(A)
Question: Is bd−(A) = X ? Otherwise find x ∈ bd−(A) \ X .

I Complexity depends on the structure and the encoding of C
I For the boolean lattice, the encoding is implicite, i.e.
C = 2V .
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Some known results about dualization

I C = 2V is a boolean lattice: Quasi-Polynomial [FK96].
I (C,⊆) Is a product of chains: Quasi-Polynomial [Elb09]
I A is the set of basis of a matroid: Polynomial [EMR09]
I (C,⊆) is a lattice: coNP-complet [BK11].
I (C,⊆) is a distributive lattice: OPEN.
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Context
Example (Frequent Itemset Mining (Agrawal et al.
[AIS93]))

I Let I a set of objects and λ the minimum support threshold

I D: a transaction database T (t ∈ T , t ⊆ I)
I L = 2I
I p(Φ,D)⇔ |{t ∈ T | Φ ∈ L,Φ ⊆ t}| ≥ λ

(Frequency constraint)

Example

I I = {pain, jus, fromage, yaourt}
I T = {{pain, fromage, yaourt , jus}, {yaourt , jus}}
I for λ = 2, {{yaourt}, {jus}, {yaourt , jus}} are frequent

itemsets (patterns)
I {yaourt , jus} is maximal (another constraint)
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Motivations

Constraint-based data mining,

I A large number of constraints have been defined
I Several data mining systems have been designed

I difficulty to add new constraints (e.g. maximal and
frequent, ...)

I often require new implementations

Challenge: Design of declarative, efficient and generic data
mining systems
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A constraint programming framework for DM [Luc De
Raedt et al. [RGN08]]

A first declarative approach for data mining based on constraint
programming

I Models and solves a wide variety of constraint based
itemset mining tasks (frequent, maximal, closed,
cost-based, discriminative...)

I CP4IM implementation
(http://dtai.cs.kuleuven.be/CP4IM/)
using one of the well known CP systems (Gecode library
[Sch] http://www.gecode.org/)

I Demonstrates the feasibility of the approach with respect
to specialized data mining systems
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Declarative approaches for Data mining

New research issue initiated by Luc De Raedt group
I Several recents publications
I A Dagstuhl seminar "Constraint programming meets

machine learning and data mining"
I An international workshop on "declarative pattern mining"

(to be held in conjunction with ICDM’2011 conference)
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Constraint programming (CP)

One of the most popular AI model for solving combinatorial
problems (e.g. scheduling, planning, configuration)

I Declarative: the user specify how the problem is modeled
and a general search engine is then used to find solutions

I The problem is modeled as constraint system
I The solver search for a solution, all solutions or optimal

solutions
I Generic: general solving paradigm (search + propagation)
I Efficient: widely used for solving a variety of real world

problems
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Constraint programming

Definition (Constraint satisfaction problem (CSP))

Let,
I X = {x1, . . . , xn} be a set of variables, with their

associated finite domains D(x1), . . . ,D(xn)
I C = {C1, . . . ,Cm} be a set of constraints defined on

subsets of X
I Cj (xk1 , . . . , xknj

) : D(xk1 )× · · · × D(xknj
)→ {0,1}

decide if there exists a valuation ρ s.t. ρ(xi) ∈ D(xi) and
ρ |= C1 ∧ · · · ∧ Cn.
We say that ρ is a model or solution of the CSP.
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CP: modeling
Different kind of constraints:

I All tutorials must be scheduled at different time-slots (all
different constraint)

I Number of students must be less than a given capacity
limit (inequality constraint)

I ...

Example (Crypto-arithmetic example)
SEND + MORE = MONEY

I Variables: V = [S, E, N, D, M, O, R, Y]
I Domains: domain([E, N, D, M, O, R, Y], 0, 9), domain([S, M], 1, 9),

I Constraints:

I 1000× S + 100× E + 10× N + D +
1000×M + 100×O + 10× R + E =
1000×M + 100× N + 10× E + Y

I all_different(Sol)
I Search: labbeling(Sol) Sol = [9, 5, 6, 7, 1, 0, 8, 2]
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CP: Search

I Propagation (deterministic): eliminates values from the
domains of the variables

I Dx = {3,4,5}, Dy = {0,1,2,3,4}, C1 : x ≤ y
I Dx → {3,4, 6 5}, Dy → {6 0, 6 1, 6 2,3,4}
I Propagator for x ≤ y :

I if D(x) = v , and v ≥ maxd∈D(y) then delete v from D(x)
I if D(y) = v , and v ≤ mind∈D(x) then delete v from D(y)

I Branching (non-deterministic):
I recursively select and instantiate a variable to a value

(e.g. recursive call with x = 3 and with x = 4)
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CP: Backtrack search algorithm

Figure 1: There are two combinations of closedness
and maximum size

between T (1) and T (2) holds. Among the many ways to
score a pattern’s ability to distinguish two datasets is the
following constraint:

T (1) = ϕ1(I)

T (2) = ϕ2(I)

|T (1)|/|T (2)| ≥ ρ,

for a given threshold ρ; we assume that for every database we
have separate ϕ and ψ operators. An itemset that satisfies
these constraints is called emerging [8].

Combining Constraints. As pointed out in the intro-
duction, it can also be interesting to combine constraints.
Defining combinations is not always straightforward when
working with constraints such as maximality and closedness
[3]. For example, assume we want to mine for δ−closed fre-
quent itemsets that have a size lower than a threshold. Two
interpretations are possible. We can define closedness with
respect to the set of all frequent itemsets, which means we
combine (1), (2), (3) and (8) into:

T = ϕ(I)

|T | ≥ θ

∀I ′ ⊃ I : |ϕ(I ′)| < (1 − δ)|T |
c(I) ≤ γ

The other interpretation is that we mine for the itemsets
that are δ−closed within the set of small itemsets:

T = ϕ(I)

|T | ≥ θ

∀I ′ ⊃ I :
`

|ϕ(I ′)| < (1 − δ)|T | ∨ c(I ′) > γ
´

c(I) ≤ γ

The difference between these two settings is illustrated in
Figure 1 for δ = 0 and γ = 1. Itemsets closed according to
constraint (8) are dashed in this figure. In the first setting,
only the itemset {3} satisfies the constraints; in the second
setting, the itemsets {1} and {2} are also closed considering
the maximum size constraint.

Similarly, combinations of maximality and anti-monotonic
constraints also have 2 interpretations. Further combina-
tions can be obtained by combining them with emerging
patterns. The challenge that we address in this paper, is
how to solve such a broad range of queries and their combi-
nations in a unified framework.

3. CONSTRAINT PROGRAMMING
Constraint programming is a declarative programming par-

adigm: instead of specifying how to solve a problem, the
user only has to specify the problem itself. The constraint

Algorithm 1 Constraint-Search(D)

1: D :=propagate(D)
2: if D is a false domain then
3: return
4: end if
5: if ∃x ∈ V : |D(x)| > 1 then
6: x := arg minx∈V,D(x)>1 f(x)
7: for all d ∈ D(x) do
8: Constraint-Search(D ∪ {x *→ {d}})
9: end for

10: else
11: Output solution
12: end if

programming system is then responsible for solving it. Con-
straint programming systems solve constraint satisfaction
problems (CSP). A CSP P = (V, D, C) is specified by

• a finite set of variables V;

• an initial domain D, which maps every variable v ∈ V
to a finite set of integers D(v);

• a finite set of constraints C.

A constraint C(x1, . . . , xk) ∈ C is a boolean function from
variables {x1, . . . , xk} ⊆ V. A constraint is called unary
if it involves one variable and binary if it involves two. A
domain D′ is called stronger than the initial domain D if
D′(x) ⊆ D(x) for all x ∈ V. A domain is false if there
exists an x ∈ V such that D(x) = ∅; a variable x ∈ V is
called fixed if |D(x)| = 1. A solution to a CSP is a domain
D′ that fixes all variables (∀x ∈ V : |D′(x)| = 1) and sat-
isfies all constraints: abusing notation, we must have that
∀C(x1, . . . , xk) ∈ C : C(D′(x1), . . . , D

′(xk)) = 1; further-
more D′ must be stronger than D, which guarantees that
every variable has a value from its initial domain D(x).

Example 1. Assume we have four people that we want to
allocate to 2 offices, and that every person has a list of other
people that he does not want to share an office with. Further-
more, every person has identified rooms he does not want to
occupy. We can represent an instance of this problem with
four variables, which represent the persons, and inequality
constraints, which encode the room-sharing constraints:

D(x1) = D(x2) = D(x3) = D(x4) = {1, 2}
C = {x1 .= 2, x1 .= x2, x3 .= x4}.

The simplest algorithm to solve CSPs enumerates all pos-
sible fixed domains, and evaluates all constraints on each
of these domains; clearly this approach is inefficient. The
outline of a general, more efficient Constraint Programming
(CP) system is given in Algorithm 1 above [14]. Essentially,
a CP system performs a depth-first search; in each node of
the search tree the algorithm branches by assigning values
to a variable that is unfixed (line 7). It backtracks when
a violation of constraints is found (line 2). The search is
further optimized by carefully choosing the variable that is
fixed next (line 6); a function f(x) ranks variables, for in-
stance, by determining which variable is involved in most
constraints.

The main concept used to speed-up the search is con-
straint propagation (line 1). Propagation reduces the do-
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Constraint programming
The constraint programming model includes several,

I kind of constraints and propagators (e.g. a catalogue of
more than 2 hundreds of global constraints)

I enhancements of the backtrack search algorithm (e.g.
search heuristics, non-chronological backtracking and
nogoods recording)

For a survey see,
I Books:

I Constraint Processing, by Rina Dechter (editor), Morgan
Kaufmann, 450 pages, 2003

I Handbook of Constraint Programming, by Francesca Rossi,
Peter van Beek and Toby Walsh, Elsevier, 978 pages, 2006

I Links:
I Association for Constraint Programming (ACP):
http://4c110.ucc.ie/acp/a4cp/

I Constraints archive:
http://4c.ucc.ie/web/archive/

I International conference on constraint programming (CP)
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Boolean Satisfiability (SAT)

I Given a CNF formula F

(a ∨ b ∨ c) ∧ (¬a ∨ b) ∧ (¬b ∨ c) ∧ (¬c ∨ a)

I F admits a model?

I F is satisfiable : {a = true,b = true, c = true} is a model

I F ∪ {(¬a ∨ ¬b ∨ ¬c)} is unsatisfiable

I Bad news: SAT is NP-Complete [Cook 71]
I Good news : Modern SAT solvers can solve instances with

millions of variables and clauses in few seconds!
⇒Widely used in formal verification, planning,
bioinformatics, cryptography, ...



An exemple : post-cbmc-zfcp-2.8-u2.cnf
p cnf 11 483 525 (vars) 32 697 150 (clauses)
1 -3 0
2 -3 0 ← x1 = ∧(x2, x3)
-1 -2 3 0
. . .
. . .
-11482897 -11483041 -11483523 0
11482897 11483041 -11483523 0
11482897 -11483041 11483523 0 ← (x3 ⇔ x2 ⇔ x3)
-11482897 11483041 11483523 0
-11483518 -11483524 0
-11483519 -11483524 0
-11483520 -11483524 0
-11483521 -11483524 0 ← x6 = ∧(x7, x8, x9, x10, x11, x12)
-11483522 -11483524 0
-11483523 -11483524 0
11483518 11483519 11483520 11483521 11483522 11483523 11483524 0
-8590303 -11483524 -11483525 0
8590303 11483524 -11483525 0
8590303 -11483524 11483525 0 ← (x13 ⇔ x14 ⇔ x15)
-8590303 11483524 11483525 0
-11483525 0

Solved in less than 1 minute [Talk by Carla Gomes]



Modern SAT solvers: four basic bricks

1. Heavy tailed phenomena: Gomes et al. [GSC97]→
Restarts

2. Resolution based conflict analysis: Marques Silva et al.
[MSS96]→ Learning

3. Activity-based variable ordering: [Brisoux et al. [BGS99],
Moskewicz et al. [MMZ+01]→ efficient heuristics

4. Watched literals: [H. Zhang el al. [Zha97], Moskewicz et al.
[MMZ+01]→ Efficient BCP

I Four component proposed in Four years



Modern SAT solvers: architecture

(2) Implication graph

(4) Conflict-clause

Backtrack friendly

(1) Literal (3) Generate
conflict-clause

(4) conflict-clause

(5) Activity

(6) Conflict

LearningLearning

[Source: Talk L. Bordeaux and Y. Hamadi]



Definitions and notations

I CNF : F = (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x3)

I Partial interpretation : ρ : X ⊆ V(F)→ {faux , vrai}
I Simplification : F|ρ denotes the formula simplified by ρ

I Implication :
−−→
imp(x3) = (x1 ∧ x2 → x3), −−→exp(x3) = {x1, x2}

I Formula F closed by UP : F∗ = (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ x2)

I Resolvent : η[x2, (¬x1 ∨ x2), (¬x2 ∨ ¬x3)] = (¬x1 ∨ ¬x3)

I Logical consequence : F |= (¬x1 ∨ ¬x3)



Conflict Driven Clause Learning (CDCL)

F ⊇ {c1, . . . , c9}

(c1) x6 ∨ ¬x11 ∨ ¬x12 (c2) ¬x11 ∨ x13 ∨ x16

(c3) x12 ∨ ¬x16 ∨ ¬x2 (c4) ¬x4 ∨ x2 ∨ ¬x10

(c5) ¬x8 ∨ x10 ∨ x1 (c6) x10 ∨ x3

(c7) x10 ∨ ¬x5 (c8) x17 ∨ ¬x1 ∨ ¬x3 ∨ x5 ∨ x18

(c9) ¬x3 ∨ ¬x19 ∨ ¬x18

Notations: x j
i literal xi assigned at level j .

ρ = 〈. . .¬x1
6 . . .¬x1

17〉〈(x2
8 ) . . .¬x2

13 . . . 〉〈(x3
4 ) . . . x3

19 . . . 〉 . . .

〈(x5
11),¬x5

12, x
5
16,¬x5

2 ,¬x5
10, x

5
1 , x

5
3 ,¬x5

5 〉



Classical Learning

3

!x6(1)

x11(5)

!x13(2)

x16(5)

!x2(5)

!x12(5)

x4(3)

x3(5)

!x5(5)

x1(5)
x18(5)

!x18(5)

c1

c2

c3
c4 c5

c6

c7

c8

!x17(1)

c9

!x10(5)

x8(2)

x19(3)

2
1

∆1 = η[x18, c9, c8] = (¬x3
19 ∨ x1

17 ∨ x5
1 ∨ x5

3 ∨ x5
5 )

∆2 = η[x5,∆1, c7] = (¬x3
19 ∨ x1

17 ∨ x5
1 ∨ x5

3 ∨ x5
10)

∆3 = η[x3,∆2, c6] = (¬x3
19 ∨ x1

17 ∨ x5
1 ∨ x5

10)

A1 = η[x1,∆3, c5] = (¬x3
19 ∨ x1

17 ∨ ¬x2
8 ∨ x5

10)⇐ Asserting Clause (AC in short)



Modern SAT solver Vs resolution

I CDCL: Marques Silva et al. [MSS96], Moskewicz et al.
[MMZ+01]
is a fundamental component of Modern SAT solvers

I Modern SAT solvers: ≈ General resolution , Knot et al.
[PD09]

I DPLL-like solver: ≈ Tree-Like resolution



Propositional Satisfiability

For a survey on propositional satisfiability see,
I Books:

I Problème SAT : Progrès et Défis, by Lakhdar Sais (editor),
Hermes Publishing Ltd, 352 pages, may 2008

I Handbook of satisfiability, by Armin Biere et al. (editor), IOS
Press, 980 pages, february 2009

I Links:
I SatLive: http://www.satlive.org/
I SAT competition: http://www.satcompetition.org/
I International Conference on Theory and Application of

Satisfiability Testing (SAT)
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CSP, SAT and PL-(0/1): Summary

SAT CSP PL 0/1
Var. Bivaluées (0/1) Multi-Valuées Bivaluées (0/1)
Contr. (x1 ∨ ¬x2 ∨ x3) T able

∑k
i=1 ai xi ≤ b

P(rédicats) ai , b ∈ Z
G(lobales)

...

Forme normale Oui Non Oui
Extensions MaxSAT, W-MaxSAT Max-CSP, WCSP, PLNE

QBF, #SAT QCSP,
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SAT, CP and PL-01: Summary

A

6

-

6

?

6

6

�

-

�

6

-

?

-

-

PL 0/1 à coeff -1, 0, 1
(Cardinalité)

PL 0/1 générale
(Pseudo Booléen)

b ∈ Z

CSP définis en
compréhension
booléens

CSP définis en
extension

CSP définis en
compréhension
quelconques

CNF

∑
aixi ≤ b

ai ,b ∈ Z

∑
xj −

∑
yj ≤ b

[Joost P. Waners:96]

[Bailleux-Boufkhad:04]

Transformation linéaire
B

[Source Bahia Project, PRC IA, 1992]
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PC - Pattern discovery modelisation

A naive approach for pattern discovery:
I 1 variable xΦ with domain L
I Constraints encoding the database D and the predicate p

I how to achieve propagation
I the set of interesting patterns is derived thanks to an

exhaustive enumeration of the CSP solutions.
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Frequent Itemset Mining (FIM) [De Readt et al.
KDD’2008]

Variables:
I the pattern Φ is represented by |I| boolean variables Ii

(D(Ii) = {0,1}).
→ Ii = 1 if the item i appears in the pattern Φ

I For each transaction t ∈ T , we associates a boolean
variable Tt (D(Tt ) = {0,1}).
→ Tt = 1 if the transaction t contains Φ
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Frequent Itemset Mining (FIM) [De Readt et al.
KDD’2008]

Constraints:
I Notation: Dti = 1 iff the transaction t contains the item i
I Constraints

I Exact covering: ∀t ∈ T ,Tt = 1⇔ t ⊇ Φ

I ∀t ∈ T ,Tt = 1⇔
∑
i∈I

Ii(1− Dti) = 0

I Frequency:
∑
t∈T

Tt ≥ s

I ∀i ∈ I, Ii = 1⇒
∑
t∈T

TtDti ≥ s

For more details see [Tutorial by De Readt]
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Itemset Mining - other variations
Flexibility of the Constraint programming for encoding variations
of the problem:

I Maximal:
∀i ∈ I, Ii = 1⇔

∑
t∈T

TtDti ≥ s

I Closed: frequency +

∀i ∈ I, Ii = 1⇔
∑
t∈T

Tt (1− Dti) = 0

I Maximal / Minimal cost:∑
i∈I

ci Ii ≤ cmax
∑
i∈I

ci Ii ≥ cmin

I Minimal average cost:∑
i∈I

(ci − cmin)Ii ≥ 0
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CP/SAT for Sequence Mining

A first Constraint Programming Approach for Enumerating
Motifs in a Sequence

Joint work between LIRIS (E. Coquery) and CRIL (S. Jabbour and L.
Saïs)

International Workshop on Declarative Pattern Mining (held in
conjunction with ICDM 2011) [CJS11]

Important remarks:

I Sequence patterns are not "representable as sets", i.e. a
one-to-one mapping between the set of sequence patterns and
a Boolean lattice does not exist

I Classical set-oriented algorithms (e.g. "Dualize and Advance")
can not be applied

56/71



Preliminary definitions

Definition (Sequence)

Let Σ be an alphabet, st. ◦ /∈ Σ (◦ is called a wildcard). A
sequence S is a string of Σ∗ i.e. S = S1S2 . . .Sn ∈ Σ∗. The set
of position is denoted by O = {1 . . . n}.

Definition (Pattern)

A pattern is a string M = M1M2 . . .Mm ∈ (Σ ∪ {◦})∗ st. m ≤ n
and M1 6= ◦ et Mm 6= ◦

Definition (Inclusion)

Let S = S1S2 . . .Sn be a sequence and M = M1M2 . . .Mm a
pattern. We say that M appears in S at position p ∈ O denoted
M ⊆p S, if ∀i ∈ O, we have Mi = Sp+i−1 or Mi = ◦. We note
LS(M) = {p ∈ O|M ⊆p S}.
We say that M ⊆ S iff ∃p ∈ O st. M ⊆p Q.
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Sequence Mining Problem

Definition (Sequence Mining Problem (SMP))

The sequence mining problem is defined as follows:
Input: A sequence S and a quorum λ
Output: All frequent patterns (motifs) M of S st. |LS(M)| ≥ λ

In the sequel, we limit (without loss of generality) to patterns of
fixed maximal size m.

Property (Anti-monotonicity)

Let M1 and M2 be two patterns ofS with M1 ⊆ M2. If
|LS(M2)| ≥ λ then |LS(M1)| ≥ λ.
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CP model of SMP : Variables

I Mi (1 ≤ i ≤ m) represent the ith symbol of the candidate
motif M. The domain of Mi is Σ ∪ {◦}.

I Pk (1 ≤ k ≤ n) true (= 1) if the motif M appears at position
k in S; false otherwise.

An instantiation of M1 . . .Mm to a1 . . . am represents the motif
a1 . . . al s.t. al 6= ◦ and ∀i , if l < i ≤ m then ai = ◦.

I l is the last position of a solid character (symbol different
from ◦) in a1 . . . am.

I An instantiation of M1 . . .M6 to a ◦ b ◦ ◦◦ represents the
motif a ◦ b.

I We add m − 1 ◦ at the end of S.
The set of variables Pk for 1 ≤ k ≤ n represents the support of
M.
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CP model of SMP: Constraints

M appears in S at position k :

inc(k ,M,S) =
m∧

i=1

(Mi = ◦ ∨ Sk+i−1 = Mi)

Inclusion of M at each position k in S :

support(M,S) =
n∧

k=1

(Pk ⇔ inc(k ,M,S))

The frequency constraint is then defined as follows:

freq(S) =
n∑

k=1

Pk ≥ λ

We also add the unary constraint : M1 6= ◦.
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The Constraint Satisfaction Problem (CSP)

The Sequence Mining Problem is defined by the following CSP
P = (V, C):

I V = {Mi |1 ≤ i ≤ m} ∪ {Pk |1 ≤ k ≤ n}
I C = support(M,S) ∧ freq(S) ∧M1 6= ◦

The set of solutions of P corresponds to the set of frequent
patterns (motifs) of S with maximal size m.
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Propositional Satisfiability (SAT) encoding

Encoding the problem as a Boolean formula to benefit from

I The clause learning component (anti-monotonic property)
I The recent progress in Satisfiability testing
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Propositional Satisfiability (SAT) encoding

I Boolean variables
I for each Mi we associate |Σ|+ 1 boolean variables
{Mc

i | c ∈ Σ ∪ {◦}}. These variables constitute a strong
backdoor set .

I The other variables Pk are Boolean.
I Clauses are obtained as follows:

I Domains encoding: expresses that a given variable Mi must
be assigned to exactly one value from Σ ∪ {◦}

I Constraints encoding: the support constraint is a boolean
formula. For the frequency constraint there exists efficient
CNF encoding [Bailleux 06, 09, Warners 96]

I encoded with a binary adder
I linear in the size of the frequency constraint.
I It is also possible to natively integrate the frequency

constraint: pseudo boolean, SAT Modulo Theory
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SAT: anti-monotonic property encoding

The integration of no-goods is natural in SAT (Learning
component)

I The SAT solver generates its own no-goods (leant clauses)
→ express possible interesting properties ?

Anti-monotonic constraints
I M ′ proved non frequent (no-good)→ Eliminates all futures

motifs M s.t. M ′ ⊆ M.
I Let M ′ = M ′1M ′2 . . .M

′
m and {i1, . . . il} the ordered set of

positions of M ′ s.t. ∀j ∈ {1 . . . l},M ′ij 6= ◦.

antiMon(M ′,M) =

m−il +1∧
x=1

l∨
y=1

(M ′iy 6= Miy +x−1)
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First experiments

I The CNF Boolean formula is generated using a Java
platform, and solved with a modified modern SAT solver
MiniSAT [ES05]:

I Search for all solutions
I generation of the anti-monotone no-goods
I integration of the strong backdoor set

I Real world data
I Bioinformatics (proteinic sequence of amino-acid)
I computer security (command history of UNIX computer

users)
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Impact of the strong backdoor and anti-monotone
no-goods
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I the integration of strong backdoor is crucial
I limited impact of anti-monotone no-goods no-goods

I huge number of no-goods ?
I most of them are redundant % unit propagation?
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Promising results
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Several Perspectives

I Improve the efficiency CP/SAT model for mining itemsets
and sequences

I Pseudo boolean and/or SAT modulo Theory models ?
I Define high declarative language (logic or algebraic) for

Data mining
I How about other kind of complex patterns (graphs, trees,

. . . )
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Conclusion

I Declarative approaches in data mining
I CP/SAT ++

I easier to modify constraints than patching C++ code !
I allows rapid prototyping of data mining algorithms
I efficient for more constrained problems (e.g. top-k)

I CP/SAT –
I less efficient than specialized implementations,
I What about the level of declarativity ?

I DB++
I driven by the "elephants" and the market

I DB –:
I not fully integrated with SQL [STA98]
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Conclusion

Some tentatives, not fully successful yet

neither in academia (US gurus don’t like it!) nor in industry
(from a clean and theoretical point of view)

DAG website: http://liris.cnrs.fr/dag/
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